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Abstract—Vinylogous Mukaiyama aldol addition of N-p-methoxybenzyl-4-methoxy-2-trimethylsilyloxypyrrole 7 to bis-MOM
threose 6 using SnCl4 as promoter gave the 4,5-erythro/5,6-threo adduct 8, with the correct absolute configurations for the castano-
spermine framework as determined by a single-crystal X-ray structure. A transition-state model is presented to rationalize
the stereoselectivity.
� 2007 Elsevier Ltd. All rights reserved.
Lewis-acid promoted vinylogous Mukaiyama aldol
reactions using silyloxypyrroles have developed into a
powerful asymmetric methodology for rapid access to
a variety of natural-product skeletons1 including those
of alkaloids.2 Of note is the seminal work carried out
by Casiraghi’s group, who have elegantly demonstrated
the application of N-Boc-2-(tert-butyldimethylsilyl-
oxy)pyrrole (TBSOP) 1 to asymmetric synthesis.3 In
the case of a substrate-controlled addition to a chiral
aldehyde such as Mukaiyama’s acetonide4 2 (see Scheme
1), four possible diastereomeric products are possible,
and Casiraghi et al. has demonstrated5 that the 4,5-
threo/5,6-erythro product 3 can be selectively accessed
in high yield by reaction of 1 with 2 using SnCl4 as a
promoter, Scheme 1. Similarly, reaction between 1 and
O-isopropylidene-DD-glyceraldehyde using BF3ÆOEt2 as
4,5-threo/
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promoter reversed the 4,5-diastereoselectivity to afford
the corresponding 4,5-erythro/5,6-erythro adduct.6

To date there is no efficient method for accessing the
other two diastereomers. In particular, realization of
the 4,5-erythro/5,6-threo stereomotif (or 7,8-threo/8,8a-
erythro using castanospermine numbering) would
provide rapid accesss to the framework of the potently
bioactive indolizidine7 alkaloid (+)-castanospermine;8

indeed such a convergent approach has eluded several
workers,5,9 Figure 1.

We have recently reported10 the application of N-benz-
yl-5-allyl-4-methoxy-2-trimethylsilyloxypyrrole to syn-
thesize the lepadiformine tricyclic core, and it seemed
attractive to us to investigate the application of the
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Figure 1. Structure of (+)-castanospermine.
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deallylated analogue to access the appropriate stereo-
motif of the castanospermine core. Of particular interest
was the potential influence of the C-4 methoxy group
on the diastereoselectivity of the vinylogous Mukai-
yama11 reaction as well as providing a functional-group
platform for castanospermine C-1 hydroxyl group
installation. In this Letter, we report on this chemistry
as providing a solution to constructing the castanosper-
mine indolizine precursor with correct configurations at
carbons 8 and 8a.

The pyrrolinone precursor 5 to our silyloxypyrrole was
readily available by condensing benzylamine or p-meth-
oxybenzylamine with commercially available enoate
ester 4, according to a known procedure.12 In our hands,
adding Hünig’s base to the condensation reaction helped
us to improve yields. Compound 4 was also available in
a one-step reaction12 from ethyl 4-chloroacetoacetate,
Scheme 2.

For the tartrate-derived threose derivative, we decided
to make changes to the acetonide 2 used extensively by
MeO
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Scheme 2. Reagents and conditions: (a) p-methoxybenzylamine,
EtN(i-Pr)2, CH3CN, D, (67%).
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Scheme 3. Reagents and conditions: (a) P2O5, (MeO)2CH2, CH2Cl2,
(96%); (b) LiAlH4, THF, �20 �C, (78%); (c) (i) n-BuLi (1.1 equiv),
THF, 0 �C; (ii) TBDPSCl (94% for two steps); (d) Swern oxidation
(92%).
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Scheme 4. Reagents and conditions: (a) n-BuLi (1.5 equiv), THF, �78 �C; (b)
(2 equiv), �78 �C to �20 �C (60–65% overall based on the aldehyde).
Mukaiyama and Casiraghi in their work, in order to
probe stereoselectivity aspects. Thus, the acetonide pro-
tecting group was replaced by two MOM groups, which
were introduced using P2O5 and dimethoxymethane.
The benzyl group was also changed to TBDPS for
chemoselectivity reasons. Scheme 3 depicts the four-step
sequence to afford aldehyde 6.

In keeping with our work on lepadiformine, we decided
to use the one-pot-strategy for preparing the silyloxy-
pyrrole involving the TMS dienol silyl ether rather than
the TBS version used by Casiraghi. Thus, pyrrolinone 5
was treated with n-BuLi (1.5 equiv) at �78 �C for 30 min
to generate the dienolate, which was silylated in situ
with excess TMSCl (3 equiv) to generate silyloxypyrrole
7. Thereafter, aldehyde 6 was added followed by SnCl4
(2 equiv) and the reaction allowed to warm to �20 �C
over a number of hours before being quenched, Scheme
4. Rapid stirring of the final reaction solution at low
temperature was found to be crucial for producing a
good result that avoided aggregation. To our delight,
chromatographic purification furnished a major product
813 in around 60–65% isolated yield (over several runs)
that was crystalline. NMR spectroscopy revealed it to
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Figure 2. X-ray crystal structure15 of 8.

6 Re preferred

H
MOMO

TBDPSO

OMOM

H

α

O

H

Cl4Sn

2

α

β

Si preferred H

Cl4Sn

O

OH

BnO O

H

Figure 3. Facial selectivities for aldehydes 2 and 6.
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Figure 4. Transition-state models for formation of adducts 3 and 8.
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be a single diastereomer, with the H-4/H-5 coupling
constant (see Scheme 1 for numbering) being around
2 Hz indicating14 erythro relative stereochemistry in con-
trast to the threo-stereochemistry obtained by Casiraghi
for 3 (Scheme 1). In order to establish the absolute ste-
reochemistry, a single crystal X-ray determination15 was
carried out to reveal 4S,5R-configurations for 8 and,
importantly, to establish four of the contiguous chiral
centres for (+)-castanospermine, Figure 2.

Analysis of facial selectivities for producing Casiraghi’s
adduct 3 and our adduct 8 reveal the following. Overall,
the reaction proceeds via ald (Si)/pyr (Si) for 3 versus
ald (Re)/pyr (Si) for 8. The aldehyde facial selectivities
may be rationalized using a Felkin–Anh chelate for
both, except that acetonide 2 used by Casiraghi (see
Scheme 1) uses a b-chelate as proposed by Mukaiyama,4

whereas our case involving 6 (Scheme 3) proceeds via an
a-chelate.16 Figure 3 summarizes these features.

Facial selectivities14,17 on the two different silyloxypyr-
roles 1 and 7 are both Si but for different reasons. In
Casiraghi’s case, the aldehyde carbonyl group of 2
points more towards the N-Boc end where a possible
cooperative interaction between tin and the carbamate
carbonyl oxygen may play a role18 in the transition
state. Such an arrangement also ensures that the alde-
hyde chain points away from the pyrrole ring. Con-
versely, in our case, Si-face selectivity in 7 is consistent
with the carbonyl group of aldehyde 6 pointing inwards
over the pyrrole in an endo-Diels–Alder-like fashion,17

to ensure that the C1–C2 bond of aldehyde 6 points
away from the pyrrole ring to accommodate the C2
hydrogen. Furthermore, the C-4 methoxy group of 7
may possibly develop cooperative interactions with tin
as shown in Figure 4, which suggests transition-state
models for the two reactions.

In summary, this work provides a solution for the
4,5-erythro/5,6-threo-selectivity in silyloxypyrrole vinyl-
ogous Mukaiyama aldol additions pertaining to cast-
anospermine synthesis. Studies directed at attempting
to transform our 4,5-erythro-adduct to castanospermine
will be reported in due course as well as the generality of
using silyloxypyrrole 7 in this new stereoselective
reaction.
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